
Data Modeling Guidebook

How to leverage ISA-95

Modeling best practices and pitfalls

How to get started with modeling industrial data

2

The digital transformation is providing industrial organizations with an unprecedented

amount of visibility and predictive insights into their operations. Every day, factories

and other industrial environments are adopting new, smart technologies that are

delivering vast amounts of data they can use to optimize production, predict machine

failures, and improve quality. However, connecting these machines to data storage

platforms or enterprise systems isn’t always seamless. It requires a standardized

approach to defining and categorizing data, so everyone across the organization has

a single source of truth and can make faster, more informed decisions.

This guidebook provides a comprehensive overview of data modeling and why

it’s essential for every industrial environment – no matter where the organization

stands along its digital journey. In the following sections, readers will gain a better

understanding of how data modeling works, what it looks like, how it works with

existing standards (such as ISA-95), and tips on how to establish a data-modeling

strategy.

Abstract

3

I. An Introduction to Data Models and Modeling

II. Leveraging ISA-95

III. Best Practices and Pitfalls

IV. How to Get Started

V. A Glossary for Industrial DataOps

VI. Appendix

 About HighByte

 About HighByte Intelligence Hub

 Author Biographies

4

15

27

33

41

47

Table of Contents

4

An Introduction to
Data Models and Modeling

The data model forms the basis for standardizing data across
a wide range of raw input data. An industrial DataOps solution
like HighByte Intelligence Hub enables users to develop
models that standardize and contextualize industrial data. In
short, HighByte Intelligence Hub is a data hub with a modeling
and transformation engine at its core.

Here are six commonly asked questions people have when
they’re considering a data-modeling solution.

I. An Introduction to Data Models and Modeling

5

01
A data model describes a rich piece of
information. The model consolidates
information to fully address a specific use
case. Use cases for industrial data can include
supervisory monitoring of equipment or
process lines, asset predictive maintenance,
product or batch traceability, quality and
productivity analysis, cost accounting,
or simply maintaining information
synchronization between multiple systems.
The information can have many different
attributes, some containing real-time, raw
operational data and others that actually
define that data. The latter provides context,
which could be a source description, unit of
measure, min and max ranges, and other
types of information that—when pulled
together—define a piece of information that
corresponds to a real “thing” like an asset,
process, system, or role.

While data models are well-known entities
in the industrial automation industry,
they go by many names. Depending on a
user’s experience or function, they may be
accustomed to different naming conventions.
For instance, a controls engineer modeling
complex data sets within a PLC might refer
to the data model as a “user-defined type.”

What is a data model?

Others associate data models with the library
of built-in complex tags that are provided
by default based on the PLC vendor’s
implementation. Still, others may think of
data models as simply the structure—such
as names, data points, and data types, and
whether these properties are required.

The industry also has come together to
create standardized data models or data sets,
like ISA-95 (discussed in the next section),
MTConnect, and companion specs to OPC
UA, which are sometimes specific to a
particular vertical industry. These models
define nomenclature, how data should be
represented, and the model’s structure (how
it is laid out).

However, there are still many data models
in use that are vendor specific (sometimes
even device specific) and, therefore, not
standardized across the industry. Information
technology (IT) systems and cloud applications
also have their own requirements on how
data should be modeled, received, and
stored. Among operational technology (OT)
and IT devices, systems, and applications,
there is a lot of data model diversity and little
standardization in real-world practice.

I. An Introduction to Data Models and Modeling

6

02 Why is data modeling important?

Data modeling is important because models standardize
information, enable interoperability, show intent, determine
trust, and ensure proper data governance.

I. An Introduction to Data Models and Modeling

7

STANDARDIZATION

INTEROPERABILITY

DATA INTEGRITY

DATA GOVERNANCE

How data is categorized and pulled together for additional meaning.

The ability for multiple users across different job functions to look at data and quickly
understand its source, structure, and what the model represents (like a pump or a
production line). This context and metadata are what makes modeling so important.

Ensures the intent of the data is clear, including its value, what it represents, if it’s in
an acceptable range, and whether it can be trusted.

Dictates how information should be shared across business units and mandates data
uniformity. It also ensures only the appropriate systems and users who need access
to that information receive the data and understand it. By modeling data with an
abstraction layer dedicated to merging, modeling, and securely sharing data, we
help ensure proper data governance.

To expand on these ideas, data modeling enables:

I. An Introduction to Data Models and Modeling

8

03

A dedicated abstraction layer, also referred to as the DataOps layer, is essential because not
every application conforms to one standard. Industry standards exist but they are finite. As
such, vendors continue to create their own schemas to model rich information in the context
of their application. Fortunately, vendors typically provide some level of an API to push and
pull data from the application in the expected format that a dedicated data modeling layer
can then leverage.

By orchestrating these integrations within a dedicated layer, we can begin to genericize data
modeling, such that a user can work in a single environment to model any number of things.
That layer then becomes responsible for transforming data into the specific data-modeling
schemas for all consuming applications. This is game changing for users who need to collect,
merge, transform, and share information with many applications that live on-premises and
in the cloud. Users can build out or deploy new applications over time and take advantage of
previous work. By managing data modeling in a centralized location, users can add, delete,
and edit parameters for connected applications without breaking existing integrations.

Why do we need a dedicated layer
for data modeling?

I. An Introduction to Data Models and Modeling

9

VISIBILITY

REDUCED DATA PREPARATION AND INTEGRATION TIME

LESS DOWNTIME

Automation engineers often know they have hardware and software on the plant floor that are
producing and collecting raw data, but they don’t know who is connecting to them and what
data is being shared. A centralized location allows OT to easily view where and how data flows
in and out of the plant floor. They know who is producing the raw data, who is consuming
the information, and how changes to the DataOps layer will impact the rest of the enterprise.
A dedicated layer adds resiliency and flexibility to the vast ecosystem of technology found in
most manufacturing facilities.

Information can be automatically propagated to any vendor’s application without touching
each application individually. It’s time consuming to model data in many different applications
as opposed to modeling data just once.

A DataOps layer provides passive connectivity—meaning, users won’t need to schedule
downtime or rewire integrations to establish communication with the solution. An industrial
DataOps solution, like HighByte Intelligence Hub, can passively drop in, make connections to
existing data sources, pull data, transform it, add context to it, and then push out real-time
modeled information to running applications using their respective APIs.

Other key benefits of an abstraction layer include:

I. An Introduction to Data Models and Modeling

10I. An Introduction to Data Models and Modeling

Other key benefits of an abstraction layer include:

FEWER ERRORS

CONSISTENCY

SECURITY

The DataOps layer transforms raw data before making it available to all consuming applications,
so there is less chance of errors occurring upstream—like attaching the wrong units of measure
to a data point. DataOps reduces the opportunity for human error by providing a central location
to manage conversions and transformations. If there is an error, it’s detected quickly and easily
fixed without troubleshooting each application or mining custom code.

For data that includes time characteristics, the DataOps layer helps ensure time stamps are
consistent and accurate across all applications. When applications are allowed to collect data
directly and independently, they may collect different time samples depending on the rate-
of-change velocity of the underlying data. Instead, by using a DataOps layer, users ensure
all applications receive the same time sample and are in synch with one another, down to
millisecond resolution.

When industrial companies manage data modeling and integration in a dedicated DataOps
solution, they bolster their defense-in-depth strategy. The modeling environment enables
only authorized individuals to determine which applications should receive data and exactly
what data they should receive. Consuming applications no longer have unfettered access to
raw data sources. The DataOps solution abstracts away this direct connection. And rather than
burying integrations in custom code, they are visible to authorized users and help protect
potentially critical infrastructure.

11

04
A data model is not—and should not—be
complicated. At its most basic definition, a
data model is one-to-many name-value pairs.
Data models are created as logical collections
of these name-value pairs that are related in
some way and—when put together—become
a valuable and useful information object.

What does a data model look like?

I. An Introduction to Data Models and Modeling

For example, an engineer might create a data
model that represents a thermostat. The first
attribute is a current value. The second attribute
is a set point value. The third attribute is a
unit value. The model clearly articulates how
a thermostat should be represented for the
enterprise. In this example, every thermostat
will have a name, current value (a floating-point
value), set point, and unit of measure (a static
character indicating degrees Fahrenheit or
degrees Celsius).

A thermostat is obviously a simple thing to
model. But this same concept applies to
even the most complex process or piece of
equipment. The model is distilled down to its
primitive, most important data points. Then
contextual attributes can be added to the
model to describe what the data points are
and what they should be, so the information
becomes self-describing to anyone viewing it.
The top-level data model and any sub-models
define the structure of the data payloads which
will be transmitted to the target system.

12

05

In HighByte Intelligence Hub, users can build models and instances, which are the blueprints
of how they want to structure data about a generic asset, product, process, or system.

Let’s say, for example, that a manufacturer has 10 pumps, and wants to model all of these
assets in a certain way to standardize the data they produce. The data attributes these pumps
have in common will form the model. The variation between pumps will result in a unique
instance. So, in this example, there is one model and 10 instances that represent those 10
real-world pumps.

After the model is built, the instances are created and populated with the appropriate
connections and data-access references needed to collect the model-defined data from the
appropriate pump and populate the real-time instance that can be shared with a consuming
application.

Users may have many instances of a single model, but building the instances doesn’t need
to be time consuming. HighByte has designed the Intelligence Hub with scalability and user
experience in mind. It’s easy to clone instances, reuse as much as possible, and then only
modify specific attributes as necessary.

What’s the difference between a
model and instance?

I. An Introduction to Data Models and Modeling

13

06 What’s the most common mistake when
users first start modeling data?

I. An Introduction to Data Models and Modeling

There are a few common pitfalls that
impact users when they first begin
modeling data in an abstraction layer
like HighByte Intelligence Hub.

The most common mistake is adding
instance-specific attributes inside the
model. So, for example, instead of creating
a property in the model named “Current
value,” a user creates a property named
“Thermostat 1 current value.” Now the
user has tied an instance-specific value
to a model, which was intended to be the
generalized blueprint. This won’t scale well
and can’t be reused. HighByte advises its
customers to keep uniqueness out of the
model, and instead reserve unique properties
for the instances they define from the
generic model. How users populate the
attributes defined by the model will add to
the uniqueness of each instance.

The second most common pitfall is starting
with models that are too complex. Many
manufacturing-specific data tools require
companies to collect every piece of data they
might need and wire it correctly the first time,
knowing that making changes to the system
down the road would be extremely difficult.
HighByte built the Intelligence Hub with
this problem in mind. Because the software
passively collects and shares data without
interrupting operations, users can start small
and iterate over time with very little pain.
HighByte advises customers to begin with
a specific, critical problem or use case and
identify the data required to solve for this
problem. Using HighByte Intelligence Hub,
an engineer can then connect the sources
and targets, build the model and instances,
and establish flows to get the modeled
information to its destination.

14I. An Introduction to Data Models and Modeling

It’s also important to make the most critical attributes of the
model required fields. Such that, if a user builds an instance
from the model, the user must populate these fields to
save the instance. The models are adaptable in HighByte
Intelligence Hub, so over time users can make changes as their
needs evolve by requiring additional attributes, making them
optional, or removing them altogether.

Data modeling doesn’t need to be complex. Start small.
Effective models distill data sets down to their simplest form
so they can easily be reused, helping manufacturers achieve
standardization at scale.

15

Leveraging ISA-95

The previous chapter mentioned that there have been
industry efforts to standardize data models. While there are
many standards available to guide companies in modeling
and structuring their data, ISA-95 is the most commonly
recognized standard around the world.

II. Leveraging ISA-95

16II. Leveraging ISA-95

ISA-95 has been implemented globally in many manufacturing plants and is the guide
for many off-the-shelf and bespoke manufacturing execution systems (MES). The ISA-95
specification defines itself as “the interface content between manufacturing operations and
control functions and other enterprise functions. The interfaces considered are the interfaces
between Levels 3 and 4 of the hierarchical model defined by this standard.”

ISA-95 provides a number of helpful models that are great starting points when looking to
implement data integrations that link MES, enterprise systems, IIoT, data lakes, and analytics.
It also eases the implementation of a unified namespace (UNS) for enterprise data integration.
A UNS is a consolidated, abstracted structure by which all business applications are able to
consume real-time industrial data in a consistent manner.

The specification defines a hierarchal model for systems, detailed information models, and a
data flow model for manufacturing operations management (MOM).

Introduction

First, this article will explain these core elements of the ISA-95 specification.

Then, it will demonstrate how the ISA-95 specification can be applied within
HighByte Intelligence Hub.

17

The ISA-95 Specification

HIERARCHAL MODEL

The hierarchal model in the ISA-95 specification provides a convenient way of thinking about
information organization and structuring information at different levels of the corporation.
In today’s environment with data lakes, UNS, and systems that aggregate information from
multiple cells, lines, areas, sites and even enterprises, this organization is very helpful when
organizing and annotating information. Manufacturers will find data and systems aligning to
different levels depending on their unique production environment and circumstance.

II. Leveraging ISA-95

Figure 1: Example of defined types of work centers and work
units as defined by the ISA-95 specification.

Image courtesy of the International Society of Automation.

18

INFORMATION MODELS

The models within the ISA-95 specification can get very complex and detailed. These models
span multiple structures including personnel, equipment, physical assets, and material. They
also span production, maintenance, quality, and inventory disciplines. The ISA-95 specification
defines the inter-relationships.

II. Leveraging ISA-95

Figure 2: Operations performance model (left) and production performance
analysis activity model interfaces (right) as defined by the ISA-95 specification.

Image courtesy of the International Society of Automation.

19

DATA FLOWS

The ISA-95 specification goes into very deep definition around the flow of data from different
functional models. These functional models could be in a single system or they can be in
separate systems depending on the corporation and manufacturing environment. When
integrating with separate systems, it’s important to identify the use case, then the source and
target system’s data requirements, and then define the execution or triggering event. These
data flows can be modeled as discrete connections between systems, handled through a data
hub, or handled through a UNS.

II. Leveraging ISA-95

Figure 3: A functional model as defined by the ISA-95 specification.

Image courtesy of the International Society of Automation.

20

HighByte Intelligence Hub & ISA-95

II. Leveraging ISA-95

HighByte Intelligence Hub serves as the integration solution
between systems at the same level or different levels in the ISA-
95 stack. It also can populate a unified namespace structured
to the ISA-95 hierarchy and can be used to structure a data lake,
data warehouse, or database using the ISA-95 models.

21

DATA ORGANIZATION

The hierarchal model defined in ISA-95 is applicable for organizing data payloads in a UNS and
organizing models and instances within HighByte Intelligence Hub. Within the Intelligence
Hub, users can set up MQTT outputs with the Enterprise, Site, Area, Line, Cell, or Machine
topic structure, so they can organize payloads of data at the appropriate layer in the broker. In
addition, this same structure provides a convenient way to organize the storage of models and
instances.

II. Leveraging ISA-95

Figure 4: The image on the right illustrates payload organization in an MQTT output from HighByte Intelligence Hub,
demonstrating how the hierarchal model on the left in the ISA-95 specification (see Figure 1) can be applied to HighByte

Intelligence Hub to organize and structure information at different levels of the corporation.

22

MODELS AND INSTANCES

There are many “models” or data structures defined in the ISA-95 specification for storing
and working with data. These complex models are required for the MES/MOM system to
operate and maintain data normalization and integrity but are not necessarily needed when
interfacing data. When interfacing data, users need to define the required information payload
for the target system or analytic. In HighByte Intelligence Hub, a model comprises multiple
attributes and other models. This allows logical models to be built for specific integrations by
reusing base components.

II. Leveraging ISA-95

Figure 5: The image on the right demonstrates the modeling UI in HighByte Intelligence Hub,
demonstrating how the information models in the ISA-95 specification (see Figure 2) can be

applied to HighByte Intelligence Hub to model production performance.

23

The ISA-95 model does not define specific manufacturing asset
data, which is required for many systems. For instance, ISA-95
doesn’t specify the specific attributes of a pump, i.e. enabled
bit, pressure, flow, manufacturer, model number, serial number,
installation data, etc. In many cases, industry groups made up
of customers and manufacturers within a specific industry have
developed asset models and metric models for use within the
applications.

The ISA-95 specification also does not specify asset-level data
or analytical data. Traceability and analytical data often span
multiple levels of the ISA-95 hierarchy and multiple models
within a level. It’s not uncommon for manufacturers to merge
sensor data with PLC, SCADA, MES, ERP, and other systems that
live at different levels.

II. Leveraging ISA-95

ISA-95 Model Scope

24

DATA FLOW

HighByte Intelligence Hub data flows can map directly to the ISA-95 data flows. Any flows from
system to system can be implemented within HighByte Intelligence Hub as defined in the
specification. Organizations also can easily implement additional data flows that leverage the
same information but are outside the scope of ISA-95.

II. Leveraging ISA-95

Figure 6: The image on the right demonstrates the flow UI in HighByte Intelligence Hub,
demonstrating how the functional models in the ISA-95 specification (see Figure 3) can be

applied to HighByte Intelligence Hub to flow information between systems.

25

KEEP PROJECTS AS SIMPLE AS POSSIBLE

FOCUS ON THE GOAL

It’s easy to turn a data-modeling project into an academic and bureaucratic process trying
to develop the perfect model for everyone. In the end, these projects typically take far longer
than they need to and don’t result in better outcomes. Most modern systems are flexible and
agile and can be changed over time. The priority should be on getting the process started and
working with the data while being flexible to make adjustments as needed. Modern analytics
requires an agile environment where the data collected can change based on the results of the
analysis.

New use case, new system, new integration architecture. When integrating systems, it’s
important to focus on the use case, the target system, and the data. Then, work backward to
the required information, the possible sources of this data, and the transformations that will be
required to convert raw data into information.

Tips for Applying ISA-95

II. Leveraging ISA-95

01

02

When applying a standard and planning your system
integration, it’s important to remember a couple things:

26

Conclusion

II. Leveraging ISA-95

The ISA-95 specification provides many useful hierarchies, models,
and flows that are applicable when integrating industrial data.
These models and structures serve as a starting point and guide
when defining a DataOps solution. Even so, a company may need
to deviate or extend from ISA-95 for its specific application, use
case, and system architecture. The data also will require more
details than are specified in ISA-95. These additional details will
come from asset-specific standards, the integrated systems, and
specific use cases the company is looking to solve.

Manufacturers can easily map the components of ISA-95 to
HighByte Intelligence Hub and add any additional customization
that’s required. By using the Intelligence Hub, the OT team will be
able to see and modify the data hierarchy, structures, and flows in
an application that promotes re-use, agility, and the flexibility to
easily make changes over time.

27

Best Practices and Pitfalls

Data-modeling projects may seem daunting at first glance.
There’s no question that manufacturers must take a number
of factors into consideration to ensure their data-modeling
project is a success. The following best practices serve as a
guideline for commonly encountered challenges and best
practices to overcome these hurdles.

III. Best Practices and Pitfalls

28III. Best Practices and Pitfalls

FOCUS ON REQUIREMENTS OF END SYSTEMS AND USE CASES

PLAN ON MODELS CHANGING

Avoid model purgatory. In many cases, users who get stuck in modeling start by creating a
logical view of a machine (it has a single press, two motors, a pump, etc.) and then they start
working backward (it’s in Area 2, at the Kentucky plant). They create this all as hierarchy.

Instead, it’s best to start by asking, What does the end application need? Maybe that’s an
application like Maximo and the user needs to create a work order. What’s the minimal
information needed from production to create that? Maybe it’s a Microsoft Power BI
dashboard that leadership needs. What’s the minimal information they need to see in the
dashboard? The user can start by creating models around this minimal information and then
add to them in the future.

If a second application comes up that needs a similar model, the user can leverage the
existing model or create a new model specific to this application. This approach is better than
“modeling the world” because, in this case, there is a 99% chance the end applications couldn’t
consume the world model anyway, so the user would need to create new models that pick off
parts of the world model.

Creating models is similar to defining a class in programming. A programmer designs the
class with an end application in mind, knowing that over time the requirements will evolve and
mature and changes will be necessary. Accept this going into data modeling. The best defense
against changing models is to model the bare minimum for the end application. It’s easier to
add to a model then it is to remove or change existing attributes.

29III. Best Practices and Pitfalls

MINIMIZE MODEL HIERARCHY WHENEVER POSSIBLE

INCLUDE LOCATION/METADATA IN THE MODEL ITSELF

Hierarchy scales complexity. As the model hierarchy grows, it becomes more difficult to manage
in the end applications. Many applications don’t support hierarchy, so users are required to
flatten data models anyway. A simple example of this is site information. Rather than create
a “Site” model, with a single name attribute, it’s better to put a “Site” attribute in the machine
model. This way, organizations avoid hierarchy, and the machine model is self-contained. If sites
have three or four other properties, like address, employee count, etc., then it may be worth
creating the hierarchy where a site contains 1-N machines, but it’s better to avoid this when
possible. Over time, as data hierarchy and modeling are adopted by more solutions, hierarchy
will become easier to manage. But today, excessive hierarchy will make integrations harder.

Similar to the guidance above, a best practice is to make models as self-contained as possible.
Think of it like storing a model in a database. Whenever possible, store all the information in a
single table. This way, users can query one table/topic/source and get all the information the end
application needs. In SQL it’s easy to split up models. As an example, you might create separate
tables for site and machine information, and do a table JOIN to get both sets of information.
There is no concept of a JOIN in a UNS or MQTT broker and writing code to listen on multiple
topics and pull the information together is messy and unreliable. It’s best to load models up
(using hierarchy or not) with all the information required in the end application.

30III. Best Practices and Pitfalls

VERSION THE MODELS

AVOID DUPLICATING MODELS IN DIFFERENT SYSTEMS

Models will change, and without versioning—especially as the UNS evolves—users will run
into problems. For example, let’s say there’s a Microsoft Azure function in the cloud that
subscribes to press machines in a UNS, parses the data, and feeds it off to a machine learning
(ML) algorithm. The data science group requests a change. They need to receive “runtime” in
milliseconds instead of seconds. There are two ways to do this:

1. Create a second attribute in the model called “runtimeMS,” make it non-required, and fill
this in with machine data as the organization rolls out the new model. The Azure function
can check if runtimeMS is in the data, and if it is, assume it’s the new model and route it to
the appropriate ML function. This works, but it’s a bit of a hack that only works when you
add to a model.

2. Change the runtimeS attribute to runtimeMS and bump the model version from 1 to 2.
In this case, the Azure function first checks the model version, and if it’s 2, it runs it through
the new ML function. This is a more robust solution that works with any change.

Where possible, use structured data coming from the sub-system. If the source system is
producing modeled data (JSON, OPC UA, SQL, etc.), try to leverage those underlying models as
much as possible. As a last resort, break the model up into its attributes and then reconstruct it.

31III. Best Practices and Pitfalls

KEEP DATA TYPES SIMPLE AND UNIFORM

IF USING MQTT, THINK ABOUT TOPIC NAMESPACE AND HOW MODELS FIT

LIMIT THE NUMBER OF MODEL “INSTANCES”

The factory has a lot of data types (bytes, bits, floats, doubles, hex, etc.). This is because
historically during the serial days we were concerned about bits and bytes. With modern
Ethernet and fiber, this is less of a concern. The end result is users often need to map very
specific data (ex. Int8) to very generic data like a numeric type in JSON. As a general rule,
specific type information is lost as data moves up to cloud systems. Plan for this. To mitigate
complexity, keep type information simple. When possible, treat everything like ints or floats.

Topics in MQTT (either standard or Sparkplug) contain metadata. For example, it’s possible to
publish machine1 data to a topic that is broken into an ISA-95 hierarchy (ex. Site1/Area2/Cell3/
Machine1). In this scenario, the site, area, and cell names are all metadata. In general, it’s best
to include this metadata in the model so it’s available in the payload as well. This way, the end
application doesn’t need to maintain the context of the topic path and can get all the context
from the payload itself.

A plant with 10 of the same machines may have production information from an MES stored in a
database, each with a unique machine ID. They also have process information from an OPC UA
server. In the general case, you’ll create a model for the machine, and then create 10 instances
of the model, one for each machine. This is required if the data mappings (in this case OPC UA
tag addresses) are unique for each machine. The user needs some place for this uniqueness,
and a good place for that is the instance. However, if instead the data is only coming from SQL,
and each row is a single machine, the user doesn’t need 10 instances. They just need a single
instance that queries the rows, packages/manipulates the data (maybe changes a column name
to something more human readable), and sends it to the UNS. In this case, 10 instances would
be overhead.

32III. Best Practices and Pitfalls

USE A SINGLE TIMESTAMP

DON’T PASS UP QUALITY

Factories are all about time-series data, and every data change of every tag has a timestamp.
This is great in SCADA/HMI and historian applications. But anything outside of this represents a
challenge. Modeled data isn’t time-series data. IT/cloud systems want a snapshot of the machine
at time X with the value for all of its attributes. Machine learning software like Tensorflow and
others don’t want to get a collection of tag value changes at various times and be required to
stitch these together to find out what the values were at time X. In fact, they don’t even want to
deal with holes in the data where the application didn’t send a value for attribute Y because it
didn’t change. Instead, they want consistent data that shows the state of the machine at time
X, X+100ms, X+200ms, etc. So, specifically for ML/artificial intelligence (AI) applications, users
must make sure they’re delivering the entire model with a single timestamp. Typically, that
timestamp is UTC and in epoch (milliseconds since midnight, January 1970).

Traditional OT data from OPC contains a value, quality, and timestamp for each tag. Historically
quality was meaningful when communicating over serial (RS-232/485). The device could send a
message that got “distorted” and the OPC server would report the quality as bad or unknown.
Or more commonly, a device would go offline and the OPC server reported bad quality.

Traditional IT systems don’t care about quality. They assume any data they get is “good”.

When possible, don’t include data quality in modeling. HighByte Intelligence Hub by default
won’t send data for an instance if one of its required attributes has bad quality data.

Instead, use quality as a way to notify people and applications that connectivity is lost. For
example, you might trigger a flow to notify someone via text message by posting an alert
to Twilio.

33

How to Get Started

Data-modeling strategies are only useful if manufacturers have a
strategic plan to make use of the staggering volumes of data they
receive on an ongoing basis.

Unfortunately, many manufacturers are drowning in data and
struggling to make it useful.

IV. How to Get Started

34

A modern industrial facility can easily produce one terabyte
of data each day. With a wave of new technologies for AI and
ML—on top of real-time dashboards and augmented reality—
manufacturers should realize significant productivity gains.
In this connected world, unplanned asset and production line
maintenance should be a thing of the past. But that’s not the
case for organizations that are simply collecting raw industrial
data. They must make the data “fit for purpose” to extract
its true value. Also, the tools they use to make the data fit for
purpose must operate at the scale of an industrial facility.

IV. How to Get Started

35IV. How to Get Started

By following these key steps, manufacturers and other
industrial companies can extract the most value from their
data models:

START WITH THE USE CASE

IT and OT projects should all start with clear use cases and business goals. For many manufacturing
companies, projects may focus on machine maintenance, process improvements, and/or product
analysis to improve quality or traceability. As part of the use case, company stakeholders should
identify the scope of the project and the applicable data that will be required. Make sure the
right cross-functional stakeholders are in the room from the beginning of the project, and that all
stakeholders agree to prioritize the project and can reach consensus on the project goals.

With the use cases and business goals identified, the next step requires identifying the target
applications that will be used to accomplish these goals. Characterize the target application by
asking these questions:

• Where is this target application located: at the edge, on-premises, in a data
center, in the cloud, etc.?

• How can this application receive data: MQTT, OPC UA, REST, database load, etc.?
• What information is needed for this application?
• How frequently should the data be updated and what causes the update?

Document responses and then move on to the next step.

01

02 IDENTIFY THE TARGET SYSTEMS

36IV. How to Get Started

IDENTIFY THE DATA SOURCES

Industrial data is an important component for addressing industrial and business use cases.
However, there are some major challenges with accessing this data and converting it into useful
information.

Volume. The typical modern factory has hundreds to thousands of pieces of machinery and
equipment that are constantly creating data. This data is generally aggregated within PLCs,
machine controllers, or DCS systems within the automation layer, though newer approaches may
also include smart sensors and smart actuators that feed data directly into the software layer.

Correlation. Automation data was primarily put in place to manage, optimize, and control the
process. The data is correlated for process control and is not correlated for asset maintenance or
product quality or traceability purposes.

Context. Data structures on PLCs and machine controllers have minimal descriptive information—
if any. In many cases, data points are referenced with cryptic data point naming schemes or
references to memory locations.

Standardization. The automation in a factory evolves over time with machinery and equipment
sourced from a wide variety of hardware vendors. This hardware was likely programmed and
defined by the vendor. This has resulted in unique data models created for each piece of
machinery and a lack of standards across the factory and company in all but the very largest and
most sophisticated manufacturers.

Organizations can better understand the specific challenges they will need to overcome for their
project by documenting their data sources. Characterize the data available to meet the target
system’s needs by asking these questions:

• What data is available?
• Where is it located: PLCs, machine controllers, databases, etc.?
• Is it real-time data or informational data (metadata)?
• Is the data currently available in the right format or will it need to be derived?

03

37IV. How to Get Started

SELECT THE INTEGRATION ARCHITECTURE

Integration architectures fall in two camps: direct API connections (application-to-application)
or integration hubs (DataOps solutions).

Direct API connections work well if you only have two applications that need to be integrated,
the data does not need to be curated or prepared for the receiving application, and the source
systems are very static. This is typically successful in environments where the manufacturing
company has a single SCADA or MES solution that houses all of the information, and there is
no need for additional applications to get access to the data.

Direct API connections don’t work well when industrial data is needed in multiple applications
like SCADA, MES, ERP, IIoT platforms, analytics, QMS, AMS, cyber-threat monitoring systems,
various custom databases, dashboards, or spreadsheet applications. Direct API connections
also don’t work well when there are many data transformations that must occur to prepare
the data for the consuming system. These transformations can easily be performed in Python,
C# or any other programming language, but they are then “invisible” and hard to maintain.
Finally, direct API connections don’t work well when data structures are frequently changing.
This happens when the factory equipment or the programs running on this equipment are
frequently changed. For example, a manufacturer may have short-run batches that require
loading new programs on the PLC. The products the manufacturer produces may evolve and
require changes to the automation. The manufacturer may change the automation system to
improve efficiency. Or, the company may replace the equipment due to age and performance.
Using the API approach buries the integrations in code. Stakeholders may not even be aware
of integrated systems until long after the equipment has been replaced or changes have been
made, resulting in undetected bad or missing data for weeks or even months.

An alternative to direct API connections is a DataOps integration hub.

04

38IV. How to Get Started

ESTABLISH SECURE CONNECTIONS

Now that the project plan is in place, begin system integration by establishing secure
connections to the source and target systems. Users must understand the protocols they will
be working with and the security risks and benefits they provide.

Many systems support open protocols to define the connection and communication. Typical
open protocols include OPC UA, MQTT, REST, ODBC, and AMQP—among others. There are
also many closed protocols and vendor-defined APIs for which the vendor of the application
publishes the API protocol documentation. Organizations should ask themselves: Does the
protocol support secure connections and how are these connections created?

Some protocols and systems support certificates exchanged by the applications. Other
protocols support usernames and passwords or tokens manually entered into the connecting
system or through third-party validation. In addition to user security, some protocols support
encrypted data packets so if there is a “man in the middle” attack they cannot read the data
being passed. Some protocols support data authentication—so even if the data is viewed by a
third party, it can’t be changed.

Security is not just about usernames, passwords, encryption, and authentication but also about
integration architecture. Protocols like MQTT require only outbound openings in firewalls,
which security teams prefer because hackers are unable to exploit the protocol to get on
internal networks.

05

39IV. How to Get Started

MODEL THE DATA

FLOW THE DATA

The corporate-wide deployment and adoption of analytics or IIoT is often delayed by the
variability of data coming off the factory floor. From one machine to the next, each industrial
device may have its own data model. Historically, vendors, systems integrators, and in-house
controls engineers have not focused on creating data standards. They refined the systems and
changed the data models over time to suit their needs. This worked for one-off projects, but
today’s IIoT projects require more scalability.

The first step in modeling data is to define standard models required in the target system to
meet the business goals of the project. At the core of the model is the real-time data coming
off the machinery and automation equipment. Most of the real-time data points will map to
single-source data points. However, when a specific data point does not exist, users can derive
data points by executing expressions or logic using other data points. They also can parse or
extract data from other data fields, or add sensors to provide required data.

These models also should include attributes for any descriptive data, which are typically not
stored in the industrial devices but are very useful when matching data and evaluating data in
the target systems. Descriptive data could be the location of the machine, the asset number of
the machine, the unit of measure, the operating ranges, or other contextual information. Once
the standard models are created, they should be instantiated for each asset, process, and/or
product. This is generally a manual task but can be accelerated if the mapping already exists
in Excel or other formats, if there is consistency from device to device that can be copied, or if a
learning algorithm can be applied.

When the modeling is complete, the data flows should be controlled model-by-model.
Organizations typically perform this by identifying the model to be moved, the target system,
and the frequency or trigger for the movement. Over time, data flows will also require
monitoring and management.

06

07

40

Wrap Up

Industrial environments change over time. Manufacturers
replace equipment, change programs, redesign products,
upgrade systems, and new users need new information to
perform their jobs. Amid this change, OT and IT professionals
will collaborate on new projects aimed at improving factory
floor productivity, efficiency, and safety. They will need industrial
data that’s fit for purpose to make use of it. And they will need
tools—like a DataOps integration hub—to help them accomplish
this task at scale. By using an integration hub, administrators
can evaluate equipment and system changes, and identify
integrations they must modify or replace. They can make
changes to data models and enable new flows in real time.

Making industrial data fit for purpose will be critical to
manufacturers looking to scale their IIoT projects and wrangle
data governance this year.

IV. How to Get Started

41

A Glossary for Industrial DataOps

V. A Glossary for Industrial DataOps

AGGREGATION

ATTRIBUTE

CONNECTION

CONTEXTUALIZATION

A consolidated view in the property set of all attribute and variable data from source PLCs,
machine controllers, RTUs, smart sensors, and other systems.

A data characteristic from a source PLC, machine controller, RTU, smart sensor, or other system
with a static value (like location) or a dynamic value (like temperature or machine state).

A connection in an Industrial DataOps solution represents a path to a source system that
contains inputs and outputs. An input represents a path to a data point contained in a
connection that can be read. An output represents a path to a data point contained in a
connection that can be written to.

Data structures on PLCs and machine controllers have minimal descriptive information—if
any. In many cases, data points are referenced with cryptic data point naming schemes or
references to memory locations. Contextualization transforms raw data into information
by presenting human-readable property names and adding static metadata to the data
set. Contextualization enables industrial data to be used more easily outside of the controls
environment for machine maintenance, process optimization, quality, and traceability.

42V. A Glossary for Industrial DataOps

CORRELATION

DATA MODEL

The purpose of automation data has historically been to control and monitor the production
process. Therefore, industrial data is correlated for process control. In cases where industrial
data must be analyzed and aligned by machine for predictive maintenance, by process for
process optimization, or by product for quality and traceability, the data must be assembled
and contextualized appropriately for each use case before it can be used. Correlation prepares
information for its end purpose by assembling, contextualizing and transposing the data into a
usable state.

The data model forms the basis for standardizing data across a wide range of raw input data.
A data model is comprised of a collection of attributes that are common to the logical item.
When working with industrial data, a data model is typically a standard representation of an
asset, process, product, system, or role.

From one machine to the next, each industrial device may have its own data model.
Historically, vendors, systems integrators, and in-house controls engineers have not focused
on creating data standards. They refined the systems and changed the data models over time
to suit their needs. This worked for one-off projects, but today’s IIoT projects require more
scalability.

To handle the scale of hundreds of machines and controllers—and tens of thousands of data
points—a set of standard models can be established within an Industrial DataOps solution. The
models correlate the data by machinery, process, and product and present it to the consuming
applications. This systematic approach of building data models greatly accelerates the usage of
this information and simplifies the management of the integrations.

43V. A Glossary for Industrial DataOps

DATA PAYLOAD

EDGE

Data payload is the collection of data that is assembled through the model instance and is sent
out in the flow to the target connection. This payload must be formulated in a way the target
system can consume it and must include enough information such that it is understandable,
identifiable, and useful.

Computing and data handling may be done at the edge, in on-premises servers, or in the
cloud.

The edge refers to the end of the TCP/IP network where it connects to industrial automation
equipment. The edge also includes the computers installed close to this network boundary
that influence the data flowing through it. As computers have become less expensive,
easier to manage, and more robust, the prevalence of system architectures with minimally
configured computers installed at the edge to process, route, and analyze data has increased.
Edge-located computers reduce latency and increase response time, making them ideal
self-contained cells to support an Industrial DataOps solution. These computers range from
PLCs and network switches with open Linux or Windows cores, to single board computers like
Raspberry Pi, to PC-sized industrialized computers.

At the core of the model is the real-time data coming off the machinery and automation
equipment. This data must often be augmented from many sources, including other
equipment or controllers nearby, smart devices or sensors, derivations or transformations
computed from existing data points available, metadata manually entered, and data from
other databases or systems. Once the standard models are created in the Industrial DataOps
solution, they can be instantiated for each logical asset, process, and/or product.

44V. A Glossary for Industrial DataOps

FLOW

A flow defines the mapping and execution of data coming in and data going out of an
Industrial DataOps solution. A flow’s source can be a simple primitive input or a modeled
instance, while its target is an output. Data flows may be controlled model-by-model by
identifying the model to be moved, the target system, and the frequency or trigger for the
movement.

ETL

ETL (Extract, Transform, Load) solutions integrate business systems with analytics systems. ETL
solutions are designed to extract data in a batch process from systems and databases like CRM
and ERP, combine this data in an intermediate data store, and then provide tools to manually
and automatically transform the data by cleaning it, aligning it, and normalizing it. The data is
then loaded into a final data store to be utilized by analytics, trending, and search tools.

Traditional ETL falls short for industrial data for a number of reasons. For one, the data must be
processed in real time not in batches. Also, the data models must be standardized since each
machine has its own data definitions, which generate a higher volume of data models than is
typically processed in ETL solutions for business systems. And, contextualization is critical and
more extensive due to the source devices and protocols.

Typical users of ETL solutions for business systems are IT or data science professionals.
However, for industrial use cases, the OT team must define and maintain data cleanup since
they’re familiar with the source systems, data nuances, and changes to the automation
equipment.

45V. A Glossary for Industrial DataOps

METADATA

NORMALIZATION

Metadata is data about data. For instance, metadata on a pressure gauge could include the
unit of measure for the pressure value or metadata on a machine could include where it is
located on the factory floor or the make and model of the machine.

Normalization requires converting property values to common units of measure, like
converting a temperature value from Fahrenheit to Celsius or converting a temperature
sensor’s raw, unitless measurement range to degrees Celsius.

Normalization can also be applied to data flow. For example, analytics systems typically expect
to receive data at a consistent or normalized frequency. An Industrial DataOps solution can
align data after it has been collected and normalize its flow to consuming applications.

INSTANCE

Models are leveraged through the creation of a model instance, each of which are unique to
a specific instance of an asset, process, product, system, or role. Whereas a model specifies
the standard attributes of a type of asset, process, system, or role, a model instance represents
one of these items with mappings to actual live data. For example, a model may be created to
represent how a quality manager’s view of a manufacturing line will be standardized. If there
are 10 manufacturing lines, 10 model instances would be created and populated with data to
represent each one.

46V. A Glossary for Industrial DataOps

TRANSFORMATION

UNIFIED NAMESPACE

Industrial computing devices like PLCs, machine controllers, smart sensors, and embedded
devices typically represent values and state with shorthand abbreviations or numbers. While
this format is ideal for storage and coding, it is not usable by anyone who is not intimately
familiar with the programming of the device. From one machine to the next, unique
transformation must be defined and performed. For example, 1 = RUNNING.

Transformations may also include statistical calculations of raw data like the average, min, and
max temperature values checked every second but recorded every hour. Transformations may
also be used to derive an attribute value when a device does not have a unique data tag for it.

A consolidated, abstracted structure by which all business applications are able to consume
real-time industrial data in a consistent manner. The benefits of a unified namespace (UNS)
include reduced time to implement new integrations, reduced efforts to maintain data
integrations, improved agility of integrations, access to new data, and improved data quality
and security.

STANDARDIZATION

The automation in a factory evolves over time with machinery and equipment sourced from a
wide variety of hardware vendors. This variety in machinery results in a wide range of available
data. Some data points may simply have different names, while others may have different
units of measure or different measurements entirely. Standardization enables the user to
homogenize the property set by asset, process, product, or target system, which allows the
data to be rapidly adopted in analytics, visualization, and other systems.

47

Appendix

About HighByte

About HighByte Intelligence Hub

VI. Appendix

HighByte is an industrial software development company in Portland, Maine, building
solutions that address the data architecture and integration challenges created by Industry 4.0.
We believe contextualized and standardized data is essential for Industry 4.0 to reach broad
adoption. That’s why we’ve launched HighByte Intelligence Hub—enabling manufacturers
to securely connect, model, and flow valuable industrial data throughout their extended
enterprise without writing or maintaining code. HighByte Intelligence Hub is the first DataOps
solution purpose-built to meet the unique requirements of industrial assets, products,
processes, and systems at the Edge.

HighByte Intelligence Hub is the first Industrial DataOps solution designed specifically for
Operations Technology teams. Purpose-built to model and manage plant floor data at the
Edge, the software enables manufacturers to securely connect, merge, model, and flow
valuable industrial data throughout the extended enterprise without writing or maintaining
code. HighByte Intelligence Hub provides the critical data infrastructure for Industrial
Transformation. Learn more and request a free trial at https://highbyte.com.

https://highbyte.com

48

Author Biographies

TONY PAINE

Tony Paine is the Chief Executive Officer of HighByte, focused on the company’s vision. He led the
architecture and development of the company’s initial product offering, HighByte Intelligence
Hub, and continues to be instrumental in its design.

Tony’s passion for integrating software and hardware began in early childhood when he
developed an application that turned a rudimentary text editor into a word processor with
generic print capabilities. He focused his education on this interest and earned a Bachelor of
Science in Electrical Engineering with a concentration in Computer Software and Hardware
Design from the University of Maine in 1996. Tony’s entrepreneurial spirit and thirst for knowledge
brought him back to the University of Maine to earn a Master of Business Administration with a
concentration in Data Analytics in 2021.
​
For the past 20 years, Tony immersed himself in industrial software development and strategy
at Kepware, most recently serving as CEO. He led the company through a successful acquisition
to PTC in 2016 prior to founding HighByte in 2018. Tony has contributed to a variety of technical
working groups, helping to shape the direction of standards used within the automation industry.

Connect with Tony on LinkedIn® professional networking services.

VI. Appendix

https://www.linkedin.com/in/tonypaine/

49

John Harrington is the Chief Business Officer of HighByte, focused on defining the company’s
business and product strategy. His areas of responsibility include market research, customer use
cases, product priorities, go-to-market, financial planning, and sales.

John is passionate about delivering technology that improves productivity and safety in
manufacturing and industrial environments. He has spent his 25-year career both delivering
software to manufacturers and working for manufacturers in operations roles. This experience
has given him a unique perspective on how suppliers and end users each play an integral role in
implementing new technology solutions.

John has a Master in Business Administration from Babson College and a Bachelor of Science in
Mechanical Engineering from Worcester Polytechnic Institute.

Connect with John on LinkedIn® professional networking services.

VI. Appendix

JOHN HARRINGTON

https://www.linkedin.com/in/john-harrington-142906a/

50

ARON SEMLE

Aron Semle is the Chief Technology Officer of HighByte, helping to guide technology and
product strategy through product development, providing technical evangelism, and supporting
customer success during the pre-sales, post-sales, and renewal cycle.

Aron previously worked at Kepware and PTC from 2008 until 2018 in a variety of roles including
software engineer, product manager, R&D lead, and director of solutions management, helping
to shape the company’s strategy in the manufacturing operations market. For the past two years,
Aron has worked as an entrepreneur and co-founder of upBed, a Maine-based startup developing
technology to provide autonomy and person-centered care for elderly populations. He joined
HighByte as CTO in September 2020.

Aron has a bachelor’s degree in Computer Engineering from the University of Maine, Orono.

Connect with Aron on LinkedIn® professional networking services.

VI. Appendix

https://www.linkedin.com/in/aron-semle-9a837910/

51

TOREY PENROD-CAMBRA

Torey Penrod-Cambra is the Chief Marketing Officer of HighByte, focused on the company’s
market presence and ability to operationalize. Her areas of responsibility include brand
development, media relations, demand generation, and product marketing. She also oversees
funding and investor relations for HighByte.

Torey is a marketing professional with nearly 15 years of experience creating compelling brand
experiences that drive customer acquisition and expansion in highly technical environments.
Torey’s career began with a focus on biotechnology and international pharmaceutical product
launches, and then evolved into a fast-climbing career in B2B industrial software. She is
passionate about securing equal STEM opportunities for women, and excited by the potential of
the Internet of Things in industrial environments.

Torey applies an analytical, data-driven approach to marketing that reflects her academic
achievements in both chemistry and ethics. Torey received a Bachelor of Arts in Chemistry from
Miami University in Oxford, Ohio and completed post-graduate studies in Medical Ethics at the
University of Pittsburgh.

Connect with Torey on LinkedIn® professional networking services.

VI. Appendix

Special thanks to Jonathan Katz, freelance writer and owner of
JSK Communications LLC, for editing this piece.

https://www.linkedin.com/in/toreypenrod/?fromQR=1

© 2021 HighByte, Inc. All rights reserved.

HighByte is a registered trademark of HighByte, Inc.

